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We use aggregated data from Facebook to show that COVID-19 is more likely to spread between regions with 

stronger social network connections. Areas with more social ties to two early COVID-19 “hotspots ” (Westchester 

County, NY, in the U.S. and Lodi province in Italy) generally had more confirmed COVID-19 cases by the end of 

March. These relationships hold after controlling for geographic distance to the hotspots as well as the population 

density and demographics of the regions. As the pandemic progressed in the U.S., a county’s social proximity to 

recent COVID-19 cases and deaths predicts future outbreaks over and above physical proximity and demographics. 

In part due to its broad coverage, social connectedness data provides additional predictive power to measures 

based on smartphone location or online search data. These results suggest that data from online social networks 

can be useful to epidemiologists and others hoping to forecast the spread of communicable diseases such as 

COVID-19. 
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To forecast the geographic spread of communicable diseases such as

OVID-19, it is valuable to know which individuals are likely to physi-

ally interact ( Piontti et al., 2018 ). In particular, since social ties shape

atterns of physical interaction, observing the strength of social connec-

ions between cities and regions can be useful for determining a local-

ty’s risk of future disease outbreaks. Yet, the geographic structure of

ocial networks is usually difficult to measure on a national or global

cale. In this paper, we overcome this challenge by using aggregated

ata from Facebook to measure social connections between regions. We

hen show that these connectedness measures can help forcecast the ge-

graphic spread of communicable diseases such as COVID-19. 

We construct a measure of the social connectedness between U.S.

ounties and between Italian provinces. This Social Connectedness Index

aptures the probability that Facebook users in a pair of these regions

re Facebook friends with each other ( Bailey et al., 2018b ). We hypoth-

size that regions connected through many friendship links are likely to

ave more physical interactions between their residents, providing op-

ortunities for the spread of communicable diseases. Indeed, our mea-

ure has been shown to be predictive of travel patterns across Europe

 Bailey et al., 2020d ) and within urban areas ( Bailey et al., 2020a ), sug-

esting it contains important information about real-world interactions.

ost directly, Coven et al. (2020) use our Social Connectedness Index to
☆ Public versions of the social connectedness data used in this paper, as w

le at https://data.humdata.org/dataset/social-connectedness-index . The full repl

xample-scripts . The authors have a research consulting relationship with Faceboo

ommunity, nobody at Facebook reviewed the contents of this paper. 
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how that counties with higher levels of social connectedness to New

ork City were more likely to be destinations for those fleeing the city

uring the pandemic, providing direct evidence for our propopsed mech-

nism. 

After introducing our Social Connectedness Index , we show that re-

ions with stronger social ties to early COVID-19 “hotspots ” Westch-

ster County, NY, in the U.S., and Lodi province in Italy had more doc-

mented COVID-19 cases per resident as of March 30, 2020. These rela-

ionships are robust to controlling for the geographic distance to these

arly hotspots, as well as demographic characteristics of the regions. So-

ial connectedness to Westchester has more predictive power for fore-

asting county-level COVID-19 cases than social connectedness to any

ther county outside the New York-Newark CSA. These case studies pro-

ide initial evidence that social connectedness might serve as a valuable

redictive measure in addition to physical distance and other inputs to

urrent epidemiological models. 

We then exploit the changing geography of the pandemic in the

.S. to conduct a more systematic in-sample analysis. We construct re-

ional measures of COVID-19 exposure through social connections ( “so-

ial proximity to cases ”) and physical distance ( “physical proximity to

ases ”). We find that changes in a county’s social proximity to cases in

ne time period are strongly correlated with the county’s subsequent
ell as similar data for a wide range of other geographies, are accessi- 

ication code is available at https://github.com/social- connectedness- index/ 

k. Since this project only uses data that is available to the broader research 
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rowth in own local cases. Even after controlling for physical proximity

o cases and other regional demographics, a doubling in social proxim-

ty to cases in one two-week period corresponds to a 24.9% increase in

wn cases in the next two-week period. These results are unlikely to be

xplained by differential testing between regions, as an increase in so-

ial proximity to deaths in one period also corresponds to an increase

n actual deaths in the next period. 

To mimic a real-world epidemiological use case, we also conduct a

imple out-of-sample prediction exercise. We find that models that in-

lude our measure of social proximity to cases are better able to predict a

egion’s future case growth than alternative models that rely only on ge-

graphic distance and other demographics. We also compare the predic-

ive value of social proximity to cases to measures from Google searches

elated to COVID-19 symptoms and the smartphone-based Location Ex-

osure Index (LEX) introduced by Couture et al. (2020) . In counties with

oth LEX and Google search data, social proximity to cases provides only

mall additional predictive value — perhaps not surprisingly, given that

he real-world movement of people captured by the LEX is precisely

he mechanism we conjecture explains the predictive power of social

roximity to cases. However, when using the best available model to

ake predictions for all U.S. counties (for many of which no LEX data

r Google search information is available), models that include social

roximity to cases sizably improve accuracy. This highlights one im-

ortant advantage of social connectedness data: its broad coverage and

lobal availability. 

Our use of the Social Connectedness Index to forecast COVID-19

pread adds to an active body of research that studies how aspects

f social media and internet-usage patterns can be used for tracking

nd preventing disease (for an overview, see Aiello et al., 2020 ). One

trand of this literature uses the content of individuals’ internet searches

r social media posts; most famously, Google Flu Trends used search

ueries related to influenza for early outbreak detection ( Ginsberg et al.,

009 ). Other researchers have also used content from Twitter posts

 Rodríguez-Martínez and Garzón-Alfonso, 2018; Jahanbin and Rahma-

ian, 2020 ), Facebook likes ( Gittelman et al., 2015 ), Wikipedia searches

 Generous et al., 2014 ), and Instagram posts ( Correia et al., 2016 ) to

redict public health outcomes. A second strand of research, which has

eceived much attention during the COVID-19 pandemic, uses geolo-

ation data to track individuals’ movement patterns. These data have

een used to explore the determinants and effects of social distancing

ehavior (for an overview, see Giuliano and Rasul, 2020) , as well as

orecast disease spread (e.g., Jia et al., 2020; Bengtsson et al., 2015;

esolowski et al., 2012; 2015; Peixoto et al., 2020 ). A third strand

f work uses crowdsourced information, including surveys, to moni-

or disease symptoms and detect outbreaks Facebook Symptom Survey ,

see Smolinski et al., 2015 ; Paolotti et al., 2014) . 

In comparison to this literature, our stable network-based measure

s less likely to suffer from changes in internet behavior or seasonality,

oth of which have hampered Google Flu Trends ( Olson et al., 2013 ). In

ddition, our measures do not require individuals to have experienced

ymptoms, which potentially allows us to identify at-risk localities be-

ore disease transmission. 1 Finally, because our measures are based only

n aggregated connections (instead of individual movement), they are

asily accessible to researchers and consistently available for a large

umber of granular geographies around the world. For example, the So-

ial Connectedness Index is available at the NUTS3 level in Europe, the

ADM2 level in the Indian Subcontinent and Canada, and the GADM1

evel throughout much of the rest of the world. 2 The index not only mea-

ures connections within countries, but also between countries, which
1 However, this suggests that our data might partner well with these measures. 

or example, if one can detect an early outbreak using surveys, they could then 

redict (and potentially prevent) the next outbreak using information on social 

onnectedness. 
2 Interested researchers may also access U.S. ZCTA-level data by emailing 

ci_data@fb.com . 
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2 
ay be otherwise challenging with mobility data from different cell-

hone providers (and important for tracking the international spread of

ommunicable diseases). 

More generally, our results add to a literature that has applied as-

ects of network theory to build spatial epidemiological models (for

verviews, see Keeling and Eames, 2005; Keeling and Rohani, 2011;

anon et al., 2011 ). Works in this literature move beyond the basic

ssumption that individuals within a population are “fully mixed, ” or

qually likely to interact; instead, they better represent the dynamics of

eal-world connections (e.g., Newman, 2002; Klovdahl, 1985; Klovdahl

t al., 1994; Mossong et al., 2008; Yang et al., 2020 ). While some of these

tudies parameterize models with information on local networks, we are

naware of any that introduce a measure with comparably high levels

f coverage and granularity. Our hope is that our unique measure of so-

ial connectedness can help parameterize future epidemiological work.

n addition, we hope that the Social Connectedness Index can advance the

iterature on the determinants and effects of urban and regional social

etworks (see Bailey et al., 2020a; Kim et al., 2017; Büchel and Ehrlich,

020; Mossay and Picard, 2011; Brueckner and Largey, 2008; Glaeser

t al., 1992 ). 

It is important to note that our objective in this paper is not to in-

orporate social connectedness into a state-of-the-art epidemiological

odel. Instead, we provide a unique measure to assess regions’ outbreak

isk, answering the call of Avery et al. (2020) , among others, who high-

ight an “urgent need ” for “creative and entrepreneurial methods ” of

nterpreting and sharing data to model coronavirus spread. To that end,

he data used in this paper, as well as similar data for a number of other

eographies, are available at https://data.humdata.org/dataset/social-

onnectedness-index . We encourage interested researchers to use them.

. Data description 

To measure the intensity of social connectedness between locations,

e use a de-identified and aggregated snapshot of all active Facebook

sers and their friendship networks from March 2020. 3 As of the end

f 2019, Facebook had nearly 2.5 billion monthly active users around

he world: 248 million in the U.S. and Canada, 394 million in Europe,

.04 billion in Asia-Pacific, and 817 million in the rest of the world

 Facebook, 2020 ). The data therefore has extremely wide coverage, and

rovides a unique opportunity to map the geographic structure of social

etworks around the world. Locations are assigned to users based on

heir information and activity on Facebook, including their public pro-

le information, and device and connection information. Establishing a

onnection on Facebook requires the consent of both individuals, and

here is an upper limit of 5000 on the number of connections a person

an have. As a result, Facebook connections are generally more likely

o be between real-world acquaintances than links on many other social

etworking platforms. 

Our measure of the social connectedness between two loca-

ions 𝑖 and 𝑗 is the Social Connectedness Index (SCI) introduced by

ailey et al. (2018b) : 

𝑜𝑐 𝑖𝑎𝑙 𝐶𝑜𝑛𝑛𝑒𝑐 𝑡𝑒𝑑𝑛𝑒𝑠𝑠 𝑖,𝑗 = 

𝐹 𝐵 𝐶𝑜𝑛𝑛𝑒𝑐 𝑡𝑖𝑜𝑛𝑠 𝑖,𝑗 

𝐹 𝐵 𝑈𝑠𝑒𝑟𝑠 𝑖 ∗ 𝐹 𝐵 𝑈𝑠𝑒𝑟𝑠 𝑗 
. (1)

ere, 𝐹 𝐵 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑖,𝑗 is the total number of Facebook friendship links

etween Facebook users living in location 𝑖 and Facebook users living in

ocation 𝑗. 𝐹 𝐵 𝑈𝑠𝑒𝑟𝑠 𝑖 and 𝐹 𝐵 𝑈𝑠𝑒𝑟𝑠 𝑗 are the number of active users in

ach location. 𝑆𝑜𝑐 𝑖𝑎𝑙 𝐶𝑜𝑛𝑛𝑒𝑐 𝑡𝑒𝑑𝑛𝑒𝑠𝑠 𝑖,𝑗 thus measures the relative prob-

bility of a Facebook friendship link between a given Facebook user in

ocation 𝑖 and a given Facebook user in location 𝑗: if this measure is
3 We use the data from March 2020, since this allows our analyses to corre- 

pond most closely to a real-time forecasting exercise. The publicly available 

ocial Connectedness Index data is based on a snapshot from August 2020. Since 

he SCI is extremely stable over time, results do not change across the various 

ata sets. 

mailto:sci_data@fb.com
https://data.humdata.org/dataset/social-connectedness-index
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wice as large, a given Facebook user in region 𝑖 is twice as likely to be

riends with a given Facebook user in region 𝑗. 

In previous work, we have shown that this measure predicts a large

umber of important economic and social interactions. For example,

ocial connectedness as measured through Facebook friendship links

s strongly related to patterns of sub-national and international trade

 Bailey et al., 2020b ), patent citations ( Bailey et al., 2018b ), and invest-

ent decisions ( Kuchler et al., 2020 ). 4 More generally, we have found

hat information on individuals’ Facebook friendship links can help un-

erstand their product adoption decisions and their housing and mort-

age choices ( Bailey et al., 2018a; 2019a; 2019b ). 

Data on COVID-19 cases in the U.S. by county come from

ohns Hopkins University Center for Systems Science and Engineering .

ata on COVID-19 cases for each Italian province come from the

talian Dipartimeno della Protezione Civile . Because differential testing

cross regions may introduce bias in case-based results, we will also use

nformation on COVID-19 related deaths from each source in Section 3 .

. Early hotspot analysis 

In this section, we explore how the domestic spread of confirmed

OVID-19 cases is related to the social connectedness to two early

OVID-19 “hotspots ”: Westchester County, NY, in the U.S., and Lodi

rovince in Italy. Westchester County includes New Rochelle, a com-

unity that had the first major confirmed COVID-19 outbreak in the

astern United States ( Chappell, 2020 ). By March 20th, the county had

ver 9300 cases, second only to nearby New York City. Additionally,

 number of articles reported that wealthy residents from Westchester

nd the New York area had fled to other parts of the U.S. ( Tully and

towe, 2020 ), providing a vector that could potentially spread the dis-

ase. Indeed, geneticists and epidemiologists later found that travel from

ew York seeded much of the first wave of U.S. COVID-19 outbreaks

 Carey and Glanz, 2020 ). Social connections to Westchester may thus

rovide particularly important information for tracking early COVID-

9 spread, especially given that Coven et al. (2020) find that social con-

ectedness to New York City predicted travel patterns from the city early

n the pandemic. Lodi is an Italian province of around 230,000 inhabi-

ants in the heavily impacted region of Lombardy. It contains Codogno,

here the earliest cases of COVID-19 in Italy were detected, and was at

he center of Italy’s outbreak ( Horowitz et al., 2020 ). 

Panel (a) of Fig. 1 shows a heatmap of the social connectedness of

estchester County, NY, to other U.S. counties; darker colors corre-

pond to stronger social ties. Panel (b) shows the distribution of COVID-

9 cases per 10,000 residents across U.S. counties on March 30, 2020,

ith darker colors corresponding to higher COVID-19 prevalence. These

aps show a number of similarities. Perhaps most notably, coastal re-

ions and urban centers appear to have both high levels of connected-

ess to Westchester and larger numbers of COVID-19 cases per resident.

ut a number of more subtle patterns also emerge. Both measures are

igh in the communities along the Florida coast (in particular along the

outheastern coast, near Miami), in western and central Colorado (in

articular in areas with ski resorts), and in the upper Northeast. These

reas are all popular vacation destinations and second home locations

or many well-heeled residents of Westchester. Indeed, the governors of

lorida and Rhode Island publicly lamented the number of New York

rea residents fleeing to their states and spreading COVID-19 ( Mower,

020; Carlisle, 2020 ). By contrast, many areas that are geographically
4 A growing body of research also uses this measure to study issues re- 

ated to COVID-19. For example, Bailey et al. (2020c) use the 𝑆𝐶𝐼, along 

ith individual-level data from Facebook, to show that social network ex- 

osure to COVID-19 cases shapes individuals social distancing behaviors. 

oltz et al. (2020) use 𝑆𝐶𝐼 data to document spillover effects in state- 

evel COVID-19 health policies. Charoenwong et al. (2020) and Makridis and 

ang (2020) work with the 𝑆𝐶𝐼 to study other behavioral effects of exposure 

o COVID-19 through friends. 

i  

N  

b  

m  

d

N

3 
loser but less socially connected to Westchester, such as counties in

estern Pennsylvania and West Virginia, had fewer confirmed COVID-

9 cases on March 30. There are also a number of patterns of COVID-19

revalence that connectedness to Westchester alone cannot explain. Ar-

as around King County, WA (Seattle), for example, have relatively low

onnectedness to Westchester, but were an independent early hotspot

f COVID-19. 

The two bottom panels of Fig. 1 explore the relationship between

OVID-19 prevalence and social ties to Westchester more formally.

anel (c) shows a binscatter plot of social connectedness to Westchester

ounty and the number of COVID-19 cases per 10,000 residents. We

xclude those counties within 50 miles of Westchester County: while

hose areas have strong social links to Westchester, they are also close

nough geographically such that their populations might interact physi-

ally with Westchester residents even in the absence of social links (e.g.,

n supermarkets and houses of worship). There is a strong positive rela-

ionship between social ties to Westchester and COVID-19 prevalence.

uantitatively, a doubling of a county’s social connectedness to Westch-

ster is associated with an increase of about 0.88 COVID-19 cases per

0,000 residents. The R-squared of this relationship is 0.093, suggesting

hat, in a statistical sense, 9.3% of the cross-county variation in COVID-

9 cases can be explained by counties’ social connectedness to Westch-

ster. 

One concern with interpreting these initial correlations is that they

ight be primarily picking up other factors that affect the spread of

OVID-19, and that are correlated with social connectedness to Westch-

ster. Specifically, even after dropping counties within 50 miles of

estchester, the correlations might be primarily picking up geographic

istance to Westchester (which is related to the number of friendship

inks to Westchester). As a result, including social connectedness might

ot improve predictive power for models that already control for some

f these other variables. In Panel (d), we therefore present a binscat-

er plot of the relationship between social connectedness to Westchester

ounty and COVID-19 cases that controls for a number of these pos-

ible confounding variables (in addition to excluding nearby counties).

ost importantly, we non-parametrically control for the geographic dis-

ance between each county and Westchester County by including 100

ummies for percentiles of that distance. We also control for median

ncome, population density, and a classification of how urban/rural a

ounty is. Even conditional on these other factors, Panel (d) shows a

trong positive relationship between COVID-19 cases as of March 30,

020 and social connectedness to Westchester County. With these con-

rols, a doubling of a county’s social connectedness to Westchester is

ssociated with an increase of about 0.80 COVID-19 cases per 10,000

esidents. The total R-squared of the statistical relationship is 0.190,

hile the incremental R-squared from controlling for social connected-

ess to Westchester is 0.037. 

Another potential concern stems from the fact that the underlying

ocial network and the site of the initial hotspot are nonrandom. This

ay confound our interpretation if, for example, counties with ties to

estchester were also destinations for European travelers seeding the

irus in the United States. To contextualize the effect of connections to

estchester in particular, we next run “placebo ” regressions, identical

o the one shown for Westchester in panel (d) of Fig. 1 , for every U.S.

ounty with a population over 50,000. Fig. 2 shows the incremental R-

quared from adding social connectedness in each of these regressions.

anel (a) excludes counties within 50 miles of the chosen county, as

n Fig. 1 . Westchester’s 0.037 incremental R-squared is second only to

ew York City, and each top 10 county is in the New York-Newark Com-

ined Statistical Area (CSA). 5 That connections to each of these counties

atters so strongly suggests that, although Westchester contained the
5 Although New York City contains multiple counties, early NYC COVID-19 

ata was not disaggregated. As such, we combine the counties in this section. 

YC is disaggregated in all analyses in Section 3 . 

https://github.com/CSSEGISandData/COVID-19
https://github.com/pcm-dpc
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Fig. 1. Social Network Distributions from Westchester and COVID-19 Cases in the U.S. 

Note: Panel (a) shows the social connectedness to Westchester for U.S. counties. Panel (b) shows the number of confirmed COVID-19 cases per 10,000 residents by 

U.S. county on March 30, 2020. Panels (c) and (d) show binscatter plots with counties more than 50 miles from Westchester as the unit of observation. To generate 

the plot in Panel (c), we group 𝑙𝑜𝑔( 𝑆𝐶𝐼) into 100 equal-sized bins and plot the average against the corresponding average case density. Panel (d) is constructed in 

a similar manner. However, we first regress 𝑙𝑜𝑔( 𝑆𝐶𝐼) and cases per 10,000 residents on a set of control variables and plot the residualized values on each axis. Red 

lines show quadratic fit regressions. The controls for Panel (d) are 100 dummies for the percentile of the county’s geographic distance to Westchester; population 

density; median household income; and dummies for the six National Center for Health Statistics Urban-Rural county classifications. 
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arliest discovered COVID-19 outbreak in the eastern U.S., community

pread may have already been present in many neighboring counties.

anel (b) shows results for regressions excluding counties within 150

iles of the chosen county. Doing so will exclude New York City and

estchester cases from every regression for a New York-Newark CSA

ounty. 6 Counties within the CSA remain as 9 of the top 10, including

he top 3: New York City, Fairfield, and Westchester. 7 These findings

ighlight that social connections to other counties that may have similar

emographics to Westchester, but that did not have an early COVID-19

utbreak, do not help with forecasting COVID-19 spread. In turn, this

uggests our previous results are not due to omitted variables whereby

ounties with links to Westchester are more susceptible to COVID-19
utbreaks for some other reason. 

6 The maximum distance from any county in the CSA to New York City and 

estchester is 91 miles and 104 miles, respectively. 
7 Anecdotally, Williamson and Hussey (2020) linked Fairfield to COVID-19 

pread early in the pandemic. 

t  

l  

p

i

4 
It is important to highlight that the purpose of this exercise is to

emonstrate the predictive power of social connectedness measured via

nline social networks for COVID-19 prevalence. The control variables

ighlight that the Social Connectedness Index has such predictive power

ver and above a number of variables on which data is already easily

vailable, and that may partially proxy for social connections in mod-

ls of communicable disease spread. We will benchmark this predictive

ower against other measures, such as smartphone location pings and

oogle searches for COVID-19 symptoms, in Section 3 . 

Fig. 3 explores the analogous relationships for Lodi province in

taly. 8 The provinces with highest COVID-19 case densities and con-

ectedness to Lodi are in the surrounding Lombardy region, as well as

he nearby Piemonte and Veneto regions. There are also relatively high

evels of both connectedness to Lodi and COVID-19 cases in Rimini, a
8 Because Italian provinces on the island of Sardinia do not align with Euro- 

ean NUTS3 regions (the level at which we measure social connectedness), we 

nclude Sardinia as a single observation in our analysis. 
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Fig. 2. Incremental 𝑅 

2 from Adding Connections to Individual U.S. Counties. 

Note: Panels show results from regressions to predict COVID-19 cases per 10k people by county on March 30, 2020. The incremental 𝑅 

2 is the increase in 𝑅 

2 from 

adding 𝑙𝑜𝑔( 𝑆𝐶𝐼) and 𝑙𝑜𝑔( 𝑆𝐶𝐼) 2 to a particular U.S. county, over and above a set of baseline control variables: 100 dummies for percentiles of distance to the county 

under investigation; population density; median household income; and dummies for the six National Center of Health Statistics Urban-Rural county classifications. 

The graphs show the distributions over the incremental 𝑅 

2 s for adding social connectedness to each county with a population over 50,000 in turn. Each regression 

in panels (a) and (b) excludes counties within 50 and 150 miles of the county of interest, respectively. In each panel the 10 largest incremental 𝑅 

2 are labeled. 
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opular tourist destination along the Adriatic sea. A number of provinces

n southern Italy send workers and students to the industrial Lombardy

egion, and therefore have strong social ties to that region. While some

f these areas have seen a number of COVID-19 cases, they are not dis-

roportionally larger, perhaps reflecting the efforts of Italian authori-

ies to restrict the movement of individuals ( Kington, 2020 ). Panels (c)

nd (d) repeat the binscatter exercises from Fig. 1 (there are fewer data

oints in Fig. 3 than there are in Fig. 1 , since there are fewer Italian

rovinces than U.S. counties). We exclude provinces within 50 km of

odi. In Panel (d) we control for geographic distance using 20 dummies

or quantiles of distance from each province to Lodi, as well as GDP

er inhabitant and population density. As before, we find that the Social

onnectedness Index appears to have predictive power above these other

easures that might commonly be used to proxy for social interactions.

uantitatively, the estimates from Panel (d) suggest that a doubling of

he 𝑆𝐶𝐼 corresponds to an increase of 16.6 COVID-19 cases per 10,000

esidents. The incremental R-squared of including social connectedness

o Lodi over the other control variables is 0.057. 9 

Taken together these case studies illustrate the potential usefulness

f our measure of social connectedness for predicting disease spread.

n the next section, we will use a time series of case growth from

arch through November, as well as additional predictive measures
9 In Appendix A , we conduct an additional exercise to mimic a potential real- 

orld use case in which U.S. public health officials might have seeked to pre- 

ict disease spread from the initial Westchester outbreak. Since, by March 10, 

here was not yet enough documented domestic COVID-19 spread to parameter- 

ze a forcecasting model based on U.S. data, these officials might have looked 

o Italy to understand how social connections to early hotspots translate into 

ubsequent case growth. To replicate such an analysis, we train a model using 

talian provinces and their conntectedness to Lodi to predict Italian COVID-19 

ases as of March 10. We then use that model to forecast U.S. COVID-19 cases 

s of March 30, based on counties’ social connectedness to Westchester as the 

nitial hotspot. We find that including social connectedness as a model input in 

his exercise improves out-of-sample predictions of COVID-19 cases across U.S. 

ounties. 

𝐶  

r  

A  

t

𝑃

H  

s  

5 
rom smartphone locations and Google searches, to explore this poten-

ial in more detail. 

. Time series analysis 

In this section, we exploit the changing geography of the pandemic

n the U.S. to more systematically investigate the predictive value of the

𝑜𝑐 𝑖𝑎𝑙 𝐶𝑜𝑛𝑛𝑒𝑐 𝑡𝑒𝑑 𝑛𝑒𝑠𝑠 𝐼𝑛𝑑 𝑒𝑥 for forecasting the spread of COVID-19. We

onstruct two primary time-varying metrics: “Social Proximity to Cases ”,

 county-level measure of exposure to COVID-19 cases through social

etworks, and “Physical Proximity to Cases ”, a county-level measure of

xposure through physical proximity. While the two measures will be

elated (because individuals generally have stronger social ties to those

ho are geographically nearby, as documented in Bailey et al., 2018b ),

he examples in the previous section illustrate that some geographically

istant places — such as Westchester and the east coast of Florida —

an have strong social ties. To benchmark the predictive power of social

onnectedness, we also construct measures using data from smartphone

ocations and Google symptom searches. 

Key Variable Construction. We construct our measure of social prox-

mity to cases as: 

𝑆𝑜𝑐𝑖𝑎𝑙 𝑃 𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦 𝑡𝑜 𝐶𝑎𝑠𝑒𝑠 𝑖,𝑡 

= 

∑

𝑗 

𝐶𝑎𝑠𝑒𝑠 𝑃 𝑒𝑟 10 𝑘 𝑗,𝑡 ∗ 
𝑆𝑜𝑐 𝑖𝑎𝑙 𝐶𝑜𝑛𝑛𝑒𝑐 𝑡𝑒𝑑𝑛𝑒𝑠𝑠 𝑖,𝑗 ∑
ℎ 𝑆𝑜𝑐 𝑖𝑎𝑙 𝐶𝑜𝑛𝑛𝑒𝑐 𝑡𝑒𝑑𝑛𝑒𝑠𝑠 𝑖,ℎ 

. (2) 

𝑎𝑠𝑒𝑠 𝑃 𝑒𝑟 10 𝑘 𝑗,𝑡 is the number of confirmed COVID-19 cases per 10,000

esidents in county 𝑗 as of time 𝑡 . The sums 𝑗 and ℎ are over all counties.

nalogously, we construct a measure of a county’s physical proximity

o cases as: 

 ℎ𝑦𝑠𝑖𝑐𝑎𝑙 𝑃 𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦 𝑡𝑜 𝐶 𝑎𝑠𝑒𝑠 𝑖,𝑡 = 

∑

𝑗 

𝐶 𝑎𝑠𝑒𝑠 𝑃 𝑒𝑟 10 𝑘 𝑗,𝑡 ∗ 
1 

1 + 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑖,𝑗 
. 

(3) 

ere, 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑖,𝑗 is the physical distance between counties 𝑖 and 𝑗 mea-

ured in miles. We create a further related exposure measure using
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(a) Percentile of SCI to Lodi Province, Italy (b) COVID-19 Cases per 10k Residents by Province

(c) Lodi binscatter without controls (d) Lodi binscatter with controls

Fig. 3. Social Network Distributions of Lodi and COVID-19 Cases in Italy. 

Note: Panel (a) shows the social connectedness to Lodi for Italian provinces. Panel (b) shows the number of confirmed COVID-19 cases by Italian province on March 

30, 2020. Panels (c) and (d) show binscatter plots with provinces more than 50 km from Lodi as the unit of observation. To generate the plot in Panel (c) we group 

𝑙𝑜𝑔( 𝑆𝐶𝐼) into 30 equal-sized bins and plot the average against the corresponding average case density. Panel (d) is constructed in a similar manner. However, we first 

regress 𝑙𝑜𝑔( 𝑆𝐶𝐼) and cases per 10,000 residents on a set of control variables and plot the residualized values on each axis. Red lines show quadratic fit regressions. 

The controls for Panel (d) are 20 dummies for quantiles of the province’s geographic distance to Lodi; GDP per inhabitant; and population density. 
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10 With the underlying assumption that Facebook usage rates (as a share of the 

true population) are roughly equal across counties, we construct these controls 

using the Social Connectedness Index as 𝑆ℎ𝑎𝑟𝑒 𝑊 𝑖𝑡ℎ𝑖𝑛 𝐾 𝑀𝐼 𝑖 = [ 𝑆𝐶𝐼 𝑖,𝑗 ∗ 𝑃 𝑜𝑝 𝑗 ∗ 
1( 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 < 𝐾 )]∕[ 

∑
𝑆𝐶 𝐼 ∗ 𝑃 𝑜𝑝 ] , for county 𝑖 . 
martphone location data. Specifically, Couture et al. (2020) create a

ocation Exposure Index (LEX) that measures, among smartphones that

inged in a given county 𝑖 today, the share that pinged in each county

at least once during the previous 14 days. We use these matricies to

onstruct: 

𝐸𝑋 𝑃 𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦 𝑡𝑜 𝐶 𝑎𝑠𝑒𝑠 𝑖,𝑡 = 

∑

𝑗 

𝐶 𝑎𝑠𝑒𝑠 𝑃 𝑒𝑟 10 𝑘 𝑗,𝑡 ∗ 
𝐿𝐸𝑋 𝑖,𝑗,𝑡 ∑
ℎ 𝐿𝐸𝑋 𝑖,ℎ,𝑡 

. (4)

We also use data from Google LLC on searches related to COVID-

9 symptoms. The data include a county by week normalized (within

ounty) probability that a user will make a symptom-related search. For

ach county and two-week period, we define the change in searches

elated to a symptom as the percent change in this probability between

he second week of the period and the second week of the previous

eriod. We use searches related to fever, cough, and fatigue. We provide

dditional details in Appendix D . Finally, to explore whether it is the

pecific bilateral patterns of connectedness or a county’s overall level of

onnectedness that is most relevant for predicting the spread of COVID-
6 
9, we include controls for the share of a county’s Facebook connections

hat are within 50 and 150 miles. 10 

Empirical Specification. We first study the relationship between ob-

erved case growth and “lagged ” (i.e., in past time periods) growth in

ur measures. We hypothesize that if social connectedness is an impor-

ant predictor of the path of COVID-19 spread, a lagged measure of so-

ial proximity to new cases will have a positive relationship with new

ase counts in the next period. For each county 𝑖 and time period 𝑡, our

aseline specification is: 

𝑜𝑔(Δ 𝐶𝑎𝑠𝑒𝑠 𝑝𝑒𝑟 10 𝑘 + 1) 𝑖,𝑡 = 𝛽1 ∗ 𝑙𝑜𝑔(Δ𝐶𝑎𝑠𝑒𝑠 𝑝𝑒𝑟 10 𝑘 + 1) 𝑖,𝑡 −1 
+ 𝛽2 ∗ 𝑙𝑜𝑔(Δ𝐶𝑎𝑠𝑒𝑠 𝑝𝑒𝑟 10 𝑘 + 1) 𝑖,𝑡 −2 
+ 𝛽3 ∗ 𝑙𝑜𝑔(Δ𝑆𝑜𝑐𝑖𝑎𝑙 𝑃 𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦 𝑡𝑜 𝐶𝑎𝑠𝑒𝑠 ) 𝑖,𝑡 −1 
+ 𝛽4 ∗ 𝑙𝑜𝑔(Δ𝑆𝑜𝑐𝑖𝑎𝑙 𝑃 𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦 𝑡𝑜 𝐶𝑎𝑠𝑒𝑠 ) 𝑖,𝑡 −2 
𝑖,𝑗 ℎ 𝑖,ℎ ℎ 
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11 In our analysis we use 500 trees. For more information on random forests, 

see Breiman (2001) . 
12 Here, we use non-binned measures of population density and median house- 

hold income. Because random forests are able to identify non-linear relation- 

ships between input and outcome measures, we no longer need to split the mea- 

sures into percentiles to allow for non-linear relationships. 
13 This requires training four models: (1) baseline; (2) baseline + LEX; (3) 

baseline + Google; and (4) baseline + LEX + Google. We train each model on 

every county that has the necessary non-missing data. For example, a county 

with LEX and Google data will be used to train all four models. 
+ 𝛽5 ∗ 𝑆ℎ𝑎𝑟𝑒 𝐹 𝑟𝑖𝑒𝑛𝑑𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 50 𝑚𝑖 𝑖 
+ 𝛽6 ∗ 𝑆ℎ𝑎𝑟𝑒 𝐹 𝑟𝑖𝑒𝑛𝑑𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 150 𝑚𝑖 𝑖 
+ 𝛽7 ∗ 𝑙𝑜𝑔(Δ𝑃 ℎ𝑦𝑠𝑖𝑐𝑎𝑙 𝑃 𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦 𝑡𝑜 𝐶𝑎𝑠𝑒𝑠 ) 𝑖,𝑡 −1 
+ 𝛽8 ∗ 𝑙𝑜𝑔(Δ𝑃 ℎ𝑦𝑠𝑖𝑐𝑎𝑙 𝑃 𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦 𝑡𝑜 𝐶𝑎𝑠𝑒𝑠 ) 𝑖,𝑡 −2 
+ 𝑋 𝑖,𝑡 + 𝜖𝑖,𝑡 (5) 

ere, 𝑡 is defined as one of the eight two-week time periods between

arch 30, and November 2, 2020. For each time period 𝑡, prior two-

eek periods are denoted 𝑡 − 2 and 𝑡 − 1 (for example, March 3 - 16 and

arch 16 - 30 for the first period starting March 30). We always include

wo lags of own case growth, and explore the effects of lagged changes

f social and physical proximity to cases. In some specifications we will

dd controls for 𝑙𝑜𝑔(Δ𝐿𝐸𝑋 𝑃 𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦 𝑡𝑜 𝐶𝑎𝑠𝑒𝑠 + 1) 𝑖,𝑡 , lagged by one and

wo time periods, and for the percent change in Google searches related

o fever, cough, and fatigue for this period or lagged by one period. 𝑋 𝑖,𝑡 

re a set of time-specific fixed effects, including percentiles of population

ensity and median household income. In our strictest specification, we

lso add time × state fixed effects. To rule out differential testing across

egions driving our results, we also conduct a similar exercise replacing

OVID-19 cases with COVID-19-related deaths. For these analyses, we

se four-week time periods, beginning with April 28 - May 25, with our

xposure measures lagged by four and eight weeks. 

Regression Analysis. Panel A of Table 1 shows that past growth in

ocial proximity to COVID-19 cases in one period has a strong positive

elationship with actual growth in cases in the subsequent period. In

olumns 1 and 2, we document this relationship without controlling for

hysical distance to cases (column 2 adds state × time fixed effects to

he specification in column 1, to control for time-varying state-level dif-

erences in public health measures). In contrast, columns 3 and 4 show

hat there is no systematic relationship between the share of a county’s

riends that are within 50 and 150 miles and COVID-19 cases. This sug-

ests that it is the specific bilateral patterns of social connections that

orrelate with disease spread, not simply that counties with more “open ”

etworks experience worse outbreaks in every period. Columns 5 and

 show that physical proximity to cases is also strongly correlated with

ubsequent case growth, a relationship which may confound the one in

olumns 1 and 2. To address this, columns 7 and 8 include both the

hysical proximity and social proximity measures. While the coefficient

n social proximity to cases declines somewhat — suggesting some of

he relationship is due to physical proximity — the relationship remains

ighly statistically and economically significant. In our strictest specifi-

ation, which includes state × period fixed effects, a doubling of social

roximity to cases in one period corresponds to a 24.9% increase in

ases per capita in the next period. 

Panel B of Table 1 presents the same specifications, using COVID-

9 deaths (instead of COVID-19 cases) as the dependent variable. The

elationships are very similar, suggesting that our results are not driven

y differential testing across counties that might have been correlated

ith social proximity to cases. 

In Appendix B we conduct two additional regression exercises. First,

e run regression 5 separately for each time period, allowing us to study

ow the relationship between social connections and new COVID-19

ases changes over the course of the pandemic. Table B.4 shows that,

n every two-week period from March 30 to November 2, a one-period

agged measure of social proximity to cases was a statistically signifi-

ant predictor of actual case growth. In Table B.5 , we add additional

easures from smartphone locations and symptom searches to our re-

ression framework. We find that changes in Google symptom searches

both in the current period and in the previous period — and lagged

EX proximity to cases are strongly correlated with present case growth.

owever, even in the presence of each of these other predictors, changes

n the social proximity to cases remains a significant predictor of subse-

uent case growth in sample. We next benchmark the predictive power

f social connectedness to these measures using an out-of-sample pre-

iction exercise. 
7 
Out-of-Sample Prediction Analysis. Building on our previous results,

e next conduct a simple out-of-sample prediction exercise. During a

andemic, local policymakers might want to determine their localities’

isks for an outbreak in real time to inform public health measures. With

his case in mind, we build a series of simple models that use available

ata at time 𝑡 to predict case growth in counties at time 𝑡 + 1 . We test

he added predictive value of social proximity to cases by building sep-

rate models that include and exclude this measure, as well as other

ossible predictors. Because we do not use the “test ” data to train the

odels, a reduction in prediction error would be reflective of a true im-

rovement in real-world predictions of COVID-19 cases that could have

een achieved from using social connectedness data (as opposed to the

ncrease in-sample 𝑅 

2 in our previous analyses). 

Table 2 shows the results of this prediction exercise. The results in all

olumns are generated using a random forest, an ensemble prediction

lgorithm commonly used in data science applications. The algorithm

llows us to find non-linear relationships between variables, without

verfitting, by aggregating mean predictions from a number of regres-

ion trees generated over sample subsets of both observations and input

ariables. 11 In most settings, random forest out-of-sample predictions

utperform those of linear models. 

Columns 1–3 describe the prediction error from a simple model that

ncludes the measures from columns 7 and 8 in Panel A of Table 1 . 12 Col-

mn 1 excludes the two lagged measures of social proximity to cases and

olumn 2 includes them. Columns 1 and 2 show the root mean squared

rror (RMSE) from a model trained using data from all periods before

he period of interest, then tested on that next period; each prediction

eriod is shown as a separate row. The RMSE for both models generally

ecreases as the training sample gets larger, ending at 0.667 and 0.652

og new cases per 10,000 residents. Column 3 shows the difference in

MSE between the two models, with negative numbers indicating an im-

rovement in out-of-sample fit from including social proximity to cases.

n every row, the RMSE is lower when including social proximity to

ases, suggesting it does significantly improve predictions. 

In columns 4–9 we add information on Google symptom searches and

obility based on smartphone locations. Doing so allows us to bench-

ark the predictive value of social proximity to cases over and above

hese other predictors. Columns 4–6 include predictions for all coun-

ies included in the COVID-19 case data. We make a prediction for each

ounty using the “best ” model (in terms of model features) based on data

vailability. For example, for a county with LEX and Google data, we

ill predict cases using a model trained with LEX and Google data. For

 county with only LEX data, we will predict using a model trained with-

ut Google data, and so on. 13 Column 6 shows that, once again, RMSE

ecreases in every period after including social proximity to cases, high-

ighting its incremental predictive value over and above other measures

ne might have used. 

In columns 7–9 we limit to the 1976 counties which have both LEX

nd Google symptom search data. Column 9 shows that in 10 of 14

eriods, predictions using social connectedness do outperform the com-

arison model. However, the differences are generally small, suggesting

hat when limiting to only counties with LEX and Google data, social

roximity to cases may provide only a small degree of additional pre-

ictive value. This is perhaps unsurprising: our proposed mechanism by

hich social connectedness helps forecast COVID-19 spread is through
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Table 1 

COVID-19 Case Growth and Prior Proximity to Cases. 

Panel A log(Change in Cases per 10k Residents + 1) 

(1) (2) (3) (4) (5) (6) (7) (8) 

2 Week Lag: 0.589 ∗ ∗ ∗ 0.415 ∗ ∗ ∗ 0.414 ∗ ∗ ∗ 0.321 ∗ ∗ ∗ 

log(Change in Social Proximity to Cases + 1) (0.041) (0.036) (0.041) (0.037) 

4 Week Lag: -0.124 ∗ ∗ ∗ -0.080 ∗ ∗ -0.002 0.010 

log(Change in Social Proximity to Cases + 1) (0.037) (0.032) (0.036) (0.032) 

Share of Friends within 50 Miles 0.096 0.031 0.050 0.076 

(0.106) (0.086) (0.100) (0.082) 

Share of Friends within 150 Miles 0.018 0.214 ∗ -0.256 ∗ ∗ 0.143 

(0.123) (0.113) (0.124) (0.109) 

2 Week Lag: 1.432 ∗ ∗ ∗ 1.754 ∗ ∗ ∗ 1.244 ∗ ∗ ∗ 1.388 ∗ ∗ ∗ 

log(Change in Physical Proximity to Cases + 1) (0.129) (0.184) (0.118) (0.176) 

4 Week Lag: -1.208 ∗ ∗ ∗ -1.433 ∗ ∗ ∗ -1.037 ∗ ∗ ∗ -1.225 ∗ ∗ ∗ 

log(Change in Physical Proximity to Cases + 1) (0.131) (0.196) (0.121) (0.187) 

2 Week Lag: 0.317 ∗ ∗ ∗ 0.316 ∗ ∗ ∗ 0.646 ∗ ∗ ∗ 0.526 ∗ ∗ ∗ 0.604 ∗ ∗ ∗ 0.514 ∗ ∗ ∗ 0.372 ∗ ∗ ∗ 0.351 ∗ ∗ ∗ 

log(Change in Cases per 10k Residents + 1) (0.022) (0.018) (0.012) (0.011) (0.011) (0.010) (0.022) (0.019) 

4 Week Lag: 0.113 ∗ ∗ ∗ 0.092 ∗ ∗ ∗ 0.077 ∗ ∗ ∗ 0.063 ∗ ∗ ∗ 0.097 ∗ ∗ ∗ 0.072 ∗ ∗ ∗ 0.071 ∗ ∗ ∗ 0.056 ∗ ∗ ∗ 

log(Change in Cases per 10k Residents + 1) (0.019) (0.016) (0.009) (0.008) (0.009) (0.008) (0.019) (0.017) 

Time x Pop. Density FEs Y Y Y Y Y Y Y Y 

Time x Median Household Income FEs Y Y Y Y Y Y Y Y 

Time x State FEs Y Y Y Y 

Sample Mean 2.177 2.177 2.177 2.177 2.177 2.177 2.177 2.177 

R-Squared 0.717 0.755 0.706 0.752 0.718 0.754 0.725 0.757 

N 47,040 47,025 47,040 47,025 47,040 47,025 47,040 47,025 

Panel B log(Change in Deaths per 10k Residents + 1) 

(1) (2) (3) (4) (5) (6) (7) (8) 

4 Week Lag: 0.471 ∗ ∗ ∗ 0.240 ∗ ∗ ∗ 0.273 ∗ ∗ ∗ 0.141 ∗ ∗ ∗ 

log(Change in Social Proximity to Deaths + 1) (0.058) (0.049) (0.049) (0.046) 

8 Week Lag: -0.018 -0.057 0.187 ∗ ∗ ∗ 0.084 ∗ 

log(Change in Social Proximity to Deaths + 1) (0.054) (0.041) (0.052) (0.043) 

Share of Friends within 50 Miles 0.109 0.149 ∗ ∗ 0.060 0.156 ∗ ∗ 

(0.076) (0.070) (0.066) (0.066) 

Share of Friends within 150 Miles 0.040 0.129 -0.014 0.116 

(0.083) (0.078) (0.081) (0.074) 

4 Week Lag: 0.738 ∗ ∗ ∗ 0.899 ∗ ∗ ∗ 0.691 ∗ ∗ ∗ 0.802 ∗ ∗ ∗ 

log(Change in Physical Proximity to Deaths + 1) (0.069) (0.125) (0.067) (0.124) 

8 Week Lag: -0.657 ∗ ∗ ∗ -0.828 ∗ ∗ ∗ -0.699 ∗ ∗ ∗ -0.865 ∗ ∗ ∗ 

log(Change in Physical Proximity to Deaths + 1) (0.077) (0.136) (0.078) (0.142) 

4 Week Lag: 0.163 ∗ ∗ ∗ 0.230 ∗ ∗ ∗ 0.467 ∗ ∗ ∗ 0.366 ∗ ∗ ∗ 0.425 ∗ ∗ ∗ 0.361 ∗ ∗ ∗ 0.247 ∗ ∗ ∗ 0.276 ∗ ∗ ∗ 

log(Change in Deaths per 10k Residents + 1) (0.032) (0.027) (0.021) (0.018) (0.018) (0.016) (0.027) (0.026) 

8 Week Lag: 0.016 0.052 ∗ ∗ 0.025 0.019 0.063 ∗ ∗ ∗ 0.032 ∗ -0.064 ∗ ∗ -0.019 

log(Change in Deaths per 10k Residents + 1) (0.033) (0.022) (0.019) (0.018) (0.018) (0.018) (0.032) (0.023) 

Time x Pop. Density FEs Y Y Y Y Y Y Y Y 

Time x Median Household Income FEs Y Y Y Y Y Y Y Y 

Time x State FEs Y Y Y Y 

Sample Mean 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 

R-Squared 0.374 0.455 0.360 0.454 0.384 0.459 0.392 0.461 

N 21,952 21,945 21,952 21,945 21,952 21,945 21,952 21,945 

Note: Table shows results from regression 5 . In Panel A, each observation is a county × two-week period (between March 30, and November 2, 2020). The dependent 

variable is log of one plus the number of new COVID-19 cases per 10,000 residents. In Panel B, each observation is a county × four-week period (between April 28, 

and November 2, 2020). The dependent variable is log of one plus the number of new COVID-19 deaths per 10,000 residents. Columns 1 and 2 include log of growth 

in social proximity to cases (deaths) lagged by one and two periods (two and four weeks in Panel A, four and eight weeks in Panel B). Columns 5 and 6 include 

analogous measures of physical proximity to cases (deaths). Columns 3 and 4 also control for the share of a county’s Facebook connections that are within 50 and 

150 miles. Columns 7 and 8 include all measures. All columns include controls for one and two period lagged changes in cases (deaths), as well as time-specific fixed 

effects for percentiles of county population density and median household income. Columns 2, 4, 6, and 8 include additional time × state fixed effects. Standard 

errors are clustered at the time × state level. Significance levels: ∗ (p < 0.10), ∗ ∗ (p < 0.05), ∗ ∗ ∗ (p < 0.01). 
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redicting in-person interactions, which are more directly measured in

EX data. 14 
14 In Appendix C we repeat this exercise using COVID-19 related deaths. We 

nd similar results. Baseline models that include social proximity to deaths have 

maller prediction errors than models that exclude the measure. Social proximity 

o deaths does not appear to add sizable predictive value to LEX and Google 

easures when limiting to counties with both sets of data; however, when using 

he “best available ” model in any county, social proximity to deaths does sizably 

mprove predictions. 
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8 
The fact that social connectedness consistently improves predic-

ions in the full set of U.S. counties (columns 4–6) highlights an im-

ortant availability advantage of the data. While the LEX and Google

ata are limited to counties with a sufficient number of devices or

earches in a period, the relatively stable nature of social connected-

ess over time (combined with Facebook’s large user base) allows the

𝐶𝐼 to be available in more counties, and potentially also at finer lev-

ls, such as zip codes. 15 Furthermore, Facebook’s global reach allows
15 The SCI data used for this paper include 3141 counties, the Google data 

nclude 2572 counties, and the LEX data include 2018 counties. 
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Table 2 

Predicting COVID-19 cases in U.S., with and without Social Proximity to Cases. 

RMSE: Baseline Model RMSE: Best Available Model RMSE: Counties w/ Google + LEX Only 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

Without Social 

Proximity to 

Cases 

With Social 

Proximity to 

Cases 

Diff. from 

Social 

Proximity to 

Cases 

Without Social 

Proximity to 

Cases 

With Social 

Proximity to 

Cases 

Diff. from 

Social 

Proximity to 

Cases 

Without Social 

Proximity to 

Cases 

With Social 

Proximity to 

Cases 

Diff. from 

Social 

Proximity to 

Cases 

(1) April 14 - April 27 1.636 1.534 -0.102 1.488 1.387 -0.102 1.399 1.299 -0.100 

(2) April 28 - May 11 0.900 0.838 -0.062 0.954 0.889 -0.066 0.887 0.835 -0.053 

(3) May 12 - May 25 0.746 0.722 -0.024 0.771 0.746 -0.025 0.671 0.646 -0.025 

(4) May 26 - June 8 0.704 0.680 -0.024 0.687 0.675 -0.012 0.584 0.581 -0.003 

(5) June 9 - June 22 0.800 0.776 -0.024 0.779 0.766 -0.013 0.669 0.660 -0.010 

(6) June 23 - July 6 0.859 0.838 -0.021 0.809 0.798 -0.011 0.665 0.667 0.002 

(7) July 7 - July 20 0.793 0.780 -0.013 0.733 0.730 -0.003 0.530 0.526 -0.004 

(8) July 21 - Aug. 10 0.755 0.719 -0.036 0.725 0.701 -0.024 0.508 0.509 0.002 

(9) Aug. 11 - Aug. 24 0.770 0.740 -0.030 0.741 0.720 -0.022 0.530 0.517 -0.014 

(10) Aug. 25 - Sep. 7 0.725 0.719 -0.005 0.728 0.722 -0.006 0.503 0.503 0.000 

(11) Sep. 8 - Sep. 21 0.699 0.691 -0.008 0.694 0.686 -0.009 0.495 0.494 -0.001 

(12) Sep. 22 - Oct. 5 0.748 0.719 -0.029 0.726 0.705 -0.021 0.513 0.511 -0.002 

(13) Oct. 6 - Oct. 19 0.688 0.662 -0.026 0.684 0.658 -0.025 0.475 0.479 0.004 

(14) Oct. 20 - Nov. 2 0.667 0.652 -0.015 0.647 0.628 -0.018 0.462 0.455 -0.007 

Note: Table shows results from county-level predictions of COVID-19 case growth. The predicted outcome is log of one plus the number of new COVID-19 cases per 

10,000 residents. All columns show root mean squared errors (RMSEs) from a random forest model trained on data from all periods prior to the period of interest. 

The model inputs in column 1 are population density; median household income; and log of growth in physical proximity to cases and actual cases, lagged by two 

and four weeks (one and two time periods). Columns 4 and 7 include information on one and two period lagged measures of LEX proximity to cases, and one period 

lagged percent changes in Google searches related to fever, cough, and fatigue. Column 4 includes predictions for 3136 counties using, for each county, a model that 

utilizes the most available information possible. Column 7 limits to the 1976 counties for which we have both Google symptom search and LEX data. Columns 2, 5, 

and 8 add lagged measures of social proximity to cases to columns 1, 4, and 7. Columns 3, 6, and 9 show the change in RMSE from adding social proximity to cases. 
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or 𝑆𝐶𝐼 measures within and between most parts of the world. We are

naware of smartphone location data that can similarly measure, for

xample, connections between GADM1 regions in Africa, NUTS3 re-

ions in Europe, and U.S. counties — and information on these con-

ections may aid in forecasting the global spread of communicable

iseases. 

. Conclusion 

In the context of threats from communicable diseases such as COVID-

9, a region’s ability to determine optimal public health responses de-

ends on its ability to forecast the risk of an outbreak ( Reich et al.,

019 ). A primary determinant of this risk is the likelihood of physi-

al interactions between the region’s residents and residents of other

reas with severe outbreaks. Information on the geography of social

onnections, which shape patterns of physical interactions, are there-

ore crucially important for public health officials. In this paper, we use

e-identified and aggregated data from Facebook to measure social con-

ections between regions, and find those connections to be an impor-

ant predictor of outbreaks during the COVID-19 pandemic. We show

hat areas that are more connected to early pandemic hotspots in the

.S. and Italy had, on average, higher case counts by March 30, 2020,

ven after controlling for physical distance and other demographics.

urthermore, due to its broad geographic coverage, social connectedness

ata improves out-of-sample predictions of COVID-19 spread during the

.S. pandemic beyond smartphone location and Google symptom search

ata. 

The methodologies we use should not be interpreted as an attempt

o create a state-of-the-art epidemiological model. However, our results

trongly suggest that our measure of social connectedness may prove

seful in future epidemiological work. In particular, its high-degree of

vailability — in terms of both geographic coverage and granularity —

llow social connectedness to provide predictive power over and above

ther available measures. 
9 
uthor Statement 
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ppendix A. Out-of-Sample Hotspot Analysis 

In this section, we conduct a simple prediction exercise to test the

alue of social connectedness in forecasting how a disease will propagate

rom a hotspot early in a pandemic. To do so, we train a model using an

talian hotspot and test it using a subsequent U.S. hotspot. 

On March 10, 2020, New York state created a “containment area ”

round New Rochelle, a community in Westchester County that had the

rst major COVID-19 outbreak in the eastern United States. At this time,

.S. local officials around the country were likely worried about the ex-

ent of their own regions’ exposures to COVID-19. Yet, in the absence

f existing data on domestic COVID-19 spread in the U.S., it may have

een difficult to calibrate a local forecasting model. One potential solu-

ion would have been to train a model using information from the Italian

utbreak — which by mid-March had been spreading for some time —

o predict COVID-19 spread in the U.S. 

We mimic this use case by first training linear regression and ran-

om forest models using data from Italy. Specifically, for each Italian

rovince, we predict the number COVID-19 cases per 10,000 people on

arch 10 using population density, a measure of income, and distance

nd social connectedness to the Lodi hotspot. We exclude provinces

ithin 80 km (50 miles) of Lodi. We train versions of these models with

nd without including social connectedness to Lodi as a predictor. In

ach model, we normalize every measure by subtracting the mean and

ividing by the standard deviation. This normalization, which is com-

on in machine learning prediction applications, ensures that our pre-

ictive measures are scaled similarly in the U.S. and Italian settings. In

ur prediction exercise we use, for each U.S. county, the Italy-trained

odels to predict the number of COVID-19 cases per 10,000 people on

arch 30, (i.e., 20 days in the future) with and without data on social

onnectedness to Westchester. 
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Table A1 

Predicting U.S. Hotspot COVID-19 spread, trained on Italian Hotspot spread. 

Linear Regression Random Forest 

(1) (2) (3) (4) (5) (6) 

Without SCI to 

Hotspot 

With SCI to 

Hotspot 

Diff. from SCI 

to Hotspot 

Without SCI to 

Hotspot 

With SCI to 

Hotspot 

Diff. from SCI 

to Hotspot 

(1) RMSE 0.990 0.972 -0.018 1.041 1.010 -0.031 

(2) Rank-Rank Corr. w/ Truth 0.238 0.350 0.112 0.254 0.315 0.061 

Note: Table shows results from county-level predictions of COVID-19 cases per 10,000 residents. Columns 1–3 and 4–6 show results from linear regression and 

random forest models, respectively. The models are trained using information from Italy on March 10, and tested using information from the U.S. on March 30. All 

measures are normalized by subtracting the mean then dividing by the standard deviation. Row (1) shows the prediction root mean squared errors (RMSEs) and row 

(2) shows prediction rank-rank correlation with the truth. The model inputs in columns 1 and 4 are 𝑙𝑜𝑔( 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ) to the hotspot (Lodi in Italy, Westchester in the 

U.S.), population density, and household income / (GDP per inhabitant). Columns 2 and 5 add 𝑙𝑜𝑔( 𝑆𝐶𝐼) to the hotspots. Columns 3 and 6 show the change in each 

measure from adding 𝑙𝑜𝑔( 𝑆𝐶𝐼) . 
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Table A.1 shows that our predictions improve when adding social

onnectedness to the hotspots as a model input. Row (1) shows that the

MSE drops from 0.99 to 0.97 (in standard deviations from the mean

ases per 10,000 residents) for the linear regression model and from

.04 to 1.01 for the random forest model. Row (2) compares the rank

f counties’ predictions with the true rank. For both models the rank-

ank correlations increase when including social connectedness to the

otspot as a predictor. 

ppendix B. Additional time series regressions 

Table A.2 shows the results from running the regression in Table 1 ’s

olumn 8 separately for every two-week period betwen March 30, and

ovember 2. In every period, a two week lagged measure of social prox-

mity to cases was a statistically significant predictor of actual case

rowth. The magnitudes of the coefficients suggest a doubling in so-

ial proximity to cases in one two-week period corresponds to between

 10.9% and 66.4% increase in actual cases in the next period, after

ontrolling for physical proximity to cases and other controls. 

Table A.3 shows the results from adding additional predictive mea-

ures to Table 1 . Columns 1 and 2 are the same as columns 7 and 8 in

able 1 . Columns 3 and 4 show that a “nowcast ” of changes in Google

ymptom search trends is strongly correlated with changes in case

rowth. Columns 5 and 6 show that this relationship persists, though

omewhat less strongly, for a one-period lagged measure of changes in

ymptom searches. The latter measure, unlike the former, could be used

o predict future case growth. Columns 7 and 8 show that the change in

EX proximity to cases in one period also has a strong positive relation-

hip with actual case growth in the next. Even in the presence of each

f these other measures, social proximity to cases remains a significant

redictor of future case growth. 

ppendix C. Out-Of-Sample Prediction: COVID-19 Deaths 

Table A.4 show the prediction error from a simple out-of-sample

orecasting exercise analogous to that in Table 2 , but for COVID-19

eaths instead of COVID-19 cases. Columns 1–3 use the variables in

olumns 7 and 8 of Table 1 , Panel B as predictors. The model presented

n column 2 includes the two lagged measures of social proximity to
10 
OVID-19 deaths, while the model presented in column 1 does not in-

lude them. The RMSE is lower in every period in the model that in-

ludes social proximity to deaths as a predictor. Columns 4–6 include

redictions for all counties included in the COVID-19 case data. We

ake a prediction using the “best ” model available (in terms of number

f model features), as described in Section 3 . Column 6 shows that the

MSE decreases again in every period when including social proxim-

ty to deaths as a predictor. Columns 7–9 limit to counties with Google

nd LEX data. Similar to our findings for county-level COVID-19 cases,

ocial connectedness does not appear to provide substantial additional

redictive value in this particular setting. 

ppendix D. Additional Details on Google Symptom Search Data 

In Section 3 , Appendix B , and Appendix C we use data on Google

earches related to COVID-19 symptoms from Google LLC . The data in-

lude a county by week normalized (within county) probability a user

ill make a symptom-related search. These measures come in a daily

eries and a weekly series. If a given symptom in a given county does

ot meet certain Google quality or privacy thresholds at the daily level,

t will be provided at the weekly level. If it cannot meet these thresholds

t the weekly level, it is not provided. If a county/symptom is provided

or a period at the daily level, it is not also provided at the weekly level.

o create a time series at the county/weekly level, we therefore average

on-missing daily measures by week. We use searches related to three

ommon COVID-19 symptoms: fever, cough, and fatigue. 

To aggregate our measure to the bi-weekly periods used in Section 3 ,

ppendix B , and Appendix C we define the change in searches related

o a symptom as the percent change in the probability between the sec-

nd week of the period and the second week of the previous period.

or example, for the period March 31, - April 13, the percent change is

rom March 23, - March 29, to April 6, - 12. In our prediction exercise

resented in Table 2 , we use a one-period lagged version of this mea-

ure. Some counties are missing data for particular weeks. So that our

nal sample has a complete time series for every included county, we

xclude counties with missing data in more than half the periods in our

ample and impute zero change in any remaining missing periods. 97

ercent of counties included are missing fewer than 1 in 4 periods and

7 percent are missing fewer than 1 in 20 periods. 
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Table A2 

COVID-19 Case Growth and Prior Proximity to Cases, by Two-Week Period. 

log(Change in Cases per 10k Residents + 1) 

March 31, - 

April 13 

April 14, - 

April 27 

April 28, - 

May 11 

May 12, - 

May 25 

May 26, - 

June 8 

June 9, - 

June 22 

June 23, - 

July 6 

July 7, - 

July 20 

July 21, - 

Aug. 10 

Aug. 11 - 

Aug. 24 

Aug. 25 - 

Sep. 7 

Sep. 8 - 

Sep. 21 

Sep. 22 - 

Oct. 5 

Oct. 6 - 

Oct. 19 

Oct. 20 - 

Nov. 2 

2 Week Lag: 0.735 ∗ ∗ ∗ 0.411 ∗ ∗ ∗ 0.150 ∗ ∗ 0.204 ∗ ∗ ∗ 0.580 ∗ ∗ ∗ 0.178 ∗ ∗ 0.287 ∗ ∗ ∗ 0.225 ∗ ∗ ∗ 0.243 ∗ ∗ ∗ 0.305 ∗ ∗ ∗ 0.314 ∗ ∗ ∗ 0.152 ∗ ∗ 0.371 ∗ ∗ ∗ 0.149 ∗ ∗ 0.313 ∗ ∗ ∗ 

log(Change in Social 

Proximity to Cases + 1) 

(0.093) (0.088) (0.060) (0.061) (0.062) (0.074) (0.057) (0.067) (0.072) (0.077) (0.080) (0.068) (0.073) (0.069) (0.069) 

4 Week Lag: 0.339 -0.190 0.157 ∗ 0.053 -0.116 ∗ 0.196 ∗ ∗ ∗ 0.057 0.097 0.084 0.024 -0.046 0.041 0.128 ∗ 0.049 -0.141 ∗ ∗ 

log(Change in Social 

Proximity to Cases + 1) 

(0.434) (0.127) (0.082) (0.060) (0.062) (0.074) (0.058) (0.062) (0.069) (0.075) (0.083) (0.072) (0.070) (0.068) (0.065) 

Share of Friends within 50 

Miles 

0.250 -0.167 0.069 -0.180 -0.218 0.039 0.484 ∗ -0.424 ∗ 0.774 ∗ ∗ ∗ 0.203 0.060 -0.547 ∗ ∗ -0.455 ∗ 0.398 ∗ 0.776 ∗ ∗ ∗ 

(0.247) (0.292) (0.278) (0.272) (0.261) (0.281) (0.262) (0.251) (0.232) (0.253) (0.267) (0.259) (0.250) (0.229) (0.214) 

Share of Friends within 

100 Miles 

0.066 0.657 ∗ 0.259 0.913 ∗ ∗ ∗ 0.191 -0.043 -0.514 ∗ 0.824 ∗ ∗ ∗ -0.213 0.300 -0.018 0.629 ∗ ∗ 0.845 ∗ ∗ ∗ -0.475 ∗ -0.655 ∗ ∗ ∗ 

(0.284) (0.336) (0.320) (0.311) (0.298) (0.322) (0.300) (0.286) (0.264) (0.285) (0.301) (0.292) (0.282) (0.258) (0.243) 

2 Week Lag: 1.125 ∗ ∗ ∗ 0.486 2.089 ∗ ∗ ∗ 1.207 ∗ ∗ ∗ -0.112 2.281 ∗ ∗ ∗ 1.401 ∗ ∗ ∗ 1.821 ∗ ∗ ∗ 2.129 ∗ ∗ ∗ 2.098 ∗ ∗ ∗ 1.977 ∗ ∗ ∗ 0.985 ∗ 2.723 ∗ ∗ ∗ 4.118 ∗ ∗ ∗ 3.876 ∗ ∗ ∗ 

log(Change in Physical 

Proximity to Cases + 1) 

(0.189) (0.388) (0.284) (0.256) (0.316) (0.436) (0.355) (0.428) (0.607) (0.761) (0.752) (0.521) (0.637) (0.456) (0.480) 

4 Week Lag: -2.193 ∗ ∗ ∗ -0.156 -1.686 ∗ ∗ ∗ -1.072 ∗ ∗ ∗ 0.429 -2.705 ∗ ∗ ∗ -1.551 ∗ ∗ ∗ -1.802 ∗ ∗ ∗ -2.127 ∗ ∗ ∗ -1.929 ∗ ∗ -1.824 ∗ ∗ -0.949 ∗ -2.452 ∗ ∗ ∗ -3.748 ∗ ∗ ∗ -3.664 ∗ ∗ ∗ 

log(Change in Physical 

Proximity to Cases + 1) 

(0.724) (0.430) (0.289) (0.274) (0.287) (0.443) (0.332) (0.405) (0.618) (0.806) (0.768) (0.544) (0.633) (0.448) (0.496) 

2 Week Lag: 0.172 ∗ ∗ ∗ 0.381 ∗ ∗ ∗ 0.554 ∗ ∗ ∗ 0.463 ∗ ∗ ∗ 0.276 ∗ ∗ ∗ 0.361 ∗ ∗ ∗ 0.328 ∗ ∗ ∗ 0.346 ∗ ∗ ∗ 0.371 ∗ ∗ ∗ 0.315 ∗ ∗ ∗ 0.283 ∗ ∗ ∗ 0.423 ∗ ∗ ∗ 0.255 ∗ ∗ ∗ 0.367 ∗ ∗ ∗ 0.327 ∗ ∗ ∗ 

log(Change in Cases per 

10k Residents + 1) 

(0.059) (0.050) (0.037) (0.036) (0.036) (0.041) (0.033) (0.036) (0.037) (0.041) (0.042) (0.035) (0.037) (0.035) (0.035) 

4 Week Lag: -0.083 0.124 ∗ -0.026 0.046 0.128 ∗ ∗ ∗ -0.005 0.003 0.016 0.004 0.033 0.131 ∗ ∗ ∗ 0.056 0.014 0.076 ∗ ∗ 0.155 ∗ ∗ ∗ 

log(Change in Cases per 

10k Residents + 1) 

(0.247) (0.075) (0.047) (0.037) (0.035) (0.040) (0.033) (0.034) (0.036) (0.040) (0.043) (0.039) (0.036) (0.033) (0.033) 

Pop. Density FEs Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 

Median Household Income 

FEs 

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 

State FEs Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 

Sample Mean 1.239 1.257 1.334 1.372 1.429 1.586 2.038 2.530 2.707 2.675 2.627 2.629 2.840 3.040 3.356 

R-Squared 0.608 0.574 0.644 0.648 0.666 0.615 0.673 0.705 0.732 0.657 0.606 0.617 0.637 0.680 0.713 

N 3,135 3,135 3,135 3,135 3,135 3,135 3,135 3,135 3,135 3,135 3,135 3,135 3,135 3,135 3,135 

Note: Table shows time-specific results from regression 5 . Each observation is a county. The dependent variable is log of one plus the number of new COVID-19 cases per 10,000 residents in one two-week period 

between March 30, and November 2, 2020. All columns include log of growth in social and physical proximity to cases, as well as log of growth in actual cases, lagged by two and four weeks (one and two time 

periods). All columns include time-specific fixed effects for percentiles of population density and median household income, time-specific fixed effects for state, and estimations of the share of a county’s Facebook 

connections that are within 50 and 150 miles Significance levels: ∗ (p < 0.10), ∗ ∗ (p < 0.05), ∗ ∗ ∗ (p < 0.01). 
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Table A3 

COVID-19 Case Growth, Prior Proximity to Cases, and Other Predictive Measures. 

log(Change in Cases per 10k Residents + 1) 

(1) (2) (3) (4) (5) (6) (7) (8) 

2 Week Lag: 0.414 ∗ ∗ ∗ 0.321 ∗ ∗ ∗ 0.362 ∗ ∗ ∗ 0.277 ∗ ∗ ∗ 0.351 ∗ ∗ ∗ 0.270 ∗ ∗ ∗ 0.141 ∗ ∗ ∗ 0.141 ∗ ∗ ∗ 

log(Change in Social Proximity to Cases + 1) (0.041) (0.037) (0.047) (0.039) (0.047) (0.039) (0.050) (0.045) 

4 Week Lag: -0.002 0.010 -0.008 0.022 0.001 0.027 -0.039 -0.014 

log(Change in Social Proximity to Cases + 1) (0.036) (0.032) (0.042) (0.035) (0.042) (0.035) (0.051) (0.050) 

Google searches related to Fever (% Change) 0.286 ∗ ∗ ∗ 

(0.024) 

0.231 ∗ ∗ ∗ 

(0.022) 

Google searches related to Cough (% Change) 0.158 ∗ ∗ ∗ 

(0.021) 

0.117 ∗ ∗ ∗ 

(0.018) 

Google searches related to Fatigue (% Change) 0.022 

(0.019) 

0.021 

(0.019) 

2 Week Lag: 0.165 ∗ ∗ ∗ 0.123 ∗ ∗ ∗ 

Google searches related to Fever (% Change) (0.021) (0.018) 

2 Week Lag: 0.189 ∗ ∗ ∗ 0.139 ∗ ∗ ∗ 

Google searches related to Cough (% Change) (0.021) (0.017) 

2 Week Lag: 0.013 0.019 

Google searches related to Fatigue (% Change) (0.019) (0.018) 

2 Week Lag: 0.269 ∗ ∗ ∗ 0.179 ∗ ∗ ∗ 

log(Change in LEX Proximity to Cases + 1) (0.025) (0.022) 

4 Week Lag: 0.006 0.006 

log(Change in LEX Proximity to Cases + 1) (0.023) (0.022) 

Share of Friends within 50 Miles 0.050 0.076 0.006 0.084 0.010 0.086 0.036 0.022 

(0.100) (0.082) (0.091) (0.075) (0.092) (0.076) (0.093) (0.081) 

Share of Friends within 150 Miles -0.256 ∗ ∗ 0.143 -0.213 ∗ 0.168 ∗ -0.220 ∗ 0.171 ∗ -0.126 0.287 ∗ ∗ ∗ 

(0.124) (0.109) (0.110) (0.097) (0.112) (0.098) (0.115) (0.101) 

2 Week Lag: 1.244 ∗ ∗ ∗ 1.388 ∗ ∗ ∗ 1.116 ∗ ∗ ∗ 1.272 ∗ ∗ ∗ 1.117 ∗ ∗ ∗ 1.261 ∗ ∗ ∗ 0.971 ∗ ∗ ∗ 1.104 ∗ ∗ ∗ 

log(Change in Physical Proximity to Cases + 1) (0.118) (0.176) (0.105) (0.167) (0.105) (0.168) (0.104) (0.170) 

4 Week Lag: -1.037 ∗ ∗ ∗ -1.225 ∗ ∗ ∗ -0.915 ∗ ∗ ∗ -1.077 ∗ ∗ ∗ -0.912 ∗ ∗ ∗ -1.066 ∗ ∗ ∗ -0.852 ∗ ∗ ∗ -0.996 ∗ ∗ ∗ 

log(Change in Physical Proximity to Cases + 1) (0.121) (0.187) (0.108) (0.178) (0.108) (0.179) (0.107) (0.180) 

2 Week Lag: 0.372 ∗ ∗ ∗ 0.351 ∗ ∗ ∗ 0.498 ∗ ∗ ∗ 0.467 ∗ ∗ ∗ 0.484 ∗ ∗ ∗ 0.456 ∗ ∗ ∗ 0.536 ∗ ∗ ∗ 0.510 ∗ ∗ ∗ 

log(Change in Cases per 10k Residents + 1) (0.022) (0.019) (0.024) (0.019) (0.024) (0.019) (0.023) (0.020) 

4 Week Lag: 0.071 ∗ ∗ ∗ 0.056 ∗ ∗ ∗ 0.027 0.013 0.034 ∗ 0.019 -0.005 0.001 

log(Change in Cases per 10k Residents + 1) (0.019) (0.017) (0.021) (0.017) (0.021) (0.017) (0.022) (0.019) 

Time x Pop. Density FEs Y Y Y Y Y Y Y Y 

Time x Median Household Income FEs Y Y Y Y Y Y Y Y 

Time x State FEs Y Y Y Y 

Sample Mean 2.177 2.177 2.279 2.279 2.279 2.279 2.333 2.333 

R-Squared 0.725 0.757 0.768 0.800 0.767 0.799 0.795 0.827 

N 47,040 47,025 38,520 38,520 38,520 38,520 30,210 30,195 

Note: Table shows results from regression 5 . Each observation is a county × two-week period (between March 30, and November 2, 2020). The dependent variable 

is log of one plus the number of new COVID-19 cases per 10,000 residents. Columns 1 and 2 are the same as columns 7 and 8 in Table 1 . Columns 3 and 4 add the 

percent growth in Google searches related to fever, cough, and fatigue from the week prior to the period to the second week of the period. Columns 5 and 6 includes 

analogous measures lagged by one period. Columns 7 and 8 add LEX-based proximity to cases. Standard errors are clustered at the time × state level. Significance 

levels: ∗ (p < 0.10), ∗ ∗ (p < 0.05), ∗ ∗ ∗ (p < 0.01). 

Table A4 

Predicting COVID-19 deaths in U.S., with and without Social Proximity to Deaths. 

RMSE: Baseline Model RMSE: Best Available Model RMSE: Counties w/ Google + LEX Only 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

Without 

Social 

Proximity 

to Cases 

With 

Social 

Proximity 

to Cases 

Diff. from 

Social 

Proximity 

to Cases 

Without 

Social 

Proximity 

to Cases 

With 

Social 

Proximity 

to Cases 

Diff. from 

Social 

Proximity 

to Cases 

Without 

Social 

Proximity 

to Cases 

With 

Social 

Proximity 

to Cases 

Diff. from 

Social 

Proximity 

to Cases 

(1) May 12 - June 8 0.765 0.731 -0.034 0.709 0.690 -0.019 0.709 0.711 0.002 

(2) June 9 - July 6 0.480 0.435 -0.045 0.438 0.402 -0.036 0.356 0.339 -0.017 

(3) July 7 - Aug. 10 0.457 0.453 -0.004 0.455 0.451 -0.003 0.431 0.428 -0.002 

(4) Aug. 11 - Sep. 7 0.471 0.462 -0.008 0.458 0.454 -0.003 0.400 0.401 0.001 

(5) Sep. 8 - Oct. 5 0.488 0.469 -0.019 0.475 0.460 -0.015 0.371 0.365 -0.006 

(6) Oct. 6 - Nov. 2 0.549 0.543 -0.006 0.544 0.539 -0.005 0.405 0.406 0.001 

Note: Table shows results from county-level predictions of COVID-19 deaths. The predicted outcome is log of one plus the number of new COVID-19 deaths per 

10,000 residents. All columns show root mean squared errors (RMSEs) from a random forest model trained on data from all periods prior to the period of interest. 

The model inputs in column 1 are population density; median household income; and log of growth in physical proximity to deaths and actual deaths, lagged by 

four and eight weeks (one and two time periods). Columns 4 and 7 include information on one and two period lagged measures of LEX proximity to deaths, and one 

period lagged percent changes in Google searches related to fever, cough, and fatigue. Column 4 includes predictions for 3156 counties using, for each county, a 

model that utilizes the most available information possible. Column 7 limits to 1976 counties for which we have both Google symptom search and LEX data. Columns 

2, 5, and 8 add lagged measures of social proximity to deaths to columns 1, 4, and 7. Columns 3, 6, and 9 show the change in RMSE from adding social proximity 

to deaths. 
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